Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 39

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

The Investigations of the $$P$$-wave $$B_s$$ states combining quark model and lattice QCD in the coupled channel framework

Yang, Z.*; Wang, G.-J.*; Wu, J.-J.*; Oka, Makoto; Zhu, S.-L.*

Journal of High Energy Physics (Internet), 2023(1), p.058_1 - 058_19, 2023/01

 Times Cited Count:2 Percentile:70.45(Physics, Particles & Fields)

Combining the quark model, the quark-pair-creation mechanism and $$B^{(*)}bar K$$ interaction, we have investigated the near-threshold $$P$$-wave $$B_s$$ states in the framework of the Hamiltonian effective field theory. With the heavy quark flavor symmetry, all the parameters are determined in the $$D_s$$ sector by fitting the lattice data. The masses of the bottom-strange partners of the $$D^{*}_{s0}(2317)$$ and $$D^{*}_{s1}(2460)$$ are predicted, which are well consistent with the lattice QCD simulation. The two $$P$$-wave $$B_s$$ states are the mixtures of the bare $$bar b s$$ core and $$B^{(*)}bar K$$ component. Moreover, we find a crossing point between the energy levels with and without the interaction Hamiltonian in the finite volume spectrum in the $$0^+$$ case, which corresponds to a CDD (Castillejo-Dalitz-Dyson) zero in the $$T$$-matrix of the $$Bbar K$$ scattering. This CDD zero will help deepen the insights of the near-threshold states and can be examined by future lattice calculation.

Journal Articles

Axial U(1) symmetry at high temperatures in $$N_f=2+1$$ lattice QCD with chiral fermions

Aoki, Shinya*; Aoki, Yasumichi*; Fukaya, Hidenori*; Hashimoto, Shoji*; Kanamori, Issaku*; Kaneko, Takashi*; Nakamura, Yoshifumi*; Rohrhofer, C.*; Suzuki, Kei

Proceedings of Science (Internet), 396, p.332_1 - 332_7, 2022/07

The axial U(1) anomaly in high-temperature QCD plays an important role to understand the phase diagram of QCD. The previous works by JLQCD Collaboration studied high-temperature QCD using 2-flavor dynamical chiral fermions such as the domain-wall fermion and reweighted overlap fermion. We extend our simulations to QCD with 2+1-flavor dynamical quarks, where the masses of the up, down, and strange quarks are near the physical point, and the temperatures are close to or higher than the pseudocritical temperature. In this talk, we will present the results for the Dirac spectrum, topological susceptibility, axial U(1) susceptibility, and hadronic collelators.

Journal Articles

What is chiral susceptibility probing?

Aoki, Shinya*; Aoki, Yasumichi*; Fukaya, Hidenori*; Hashimoto, Shoji*; Rohrhofer, C.*; Suzuki, Kei

Proceedings of Science (Internet), 396, p.050_1 - 050_9, 2022/07

In the early days of QCD, the axial $$U(1)$$ anomaly was considered as a trigger for the breaking of the $$SU(2)_Ltimes SU(2)_R$$ symmetry through topological excitations of gluon fields. However, it has been a challenge for lattice QCD to quantify the effect. In this work, we simulate QCD at high temperatures with chiral fermions. The exact chiral symmetry enables us to separate the contribution from the axial $$U(1)$$ breaking from others among the susceptibilities in the scalar and pseudoscalar channels. Our result in two-flavor QCD indicates that the chiral susceptibility, which is conventionally used as a probe for $$SU(2)_Ltimes SU(2)_R$$ breaking, is actually dominated by the axial $$U(1)$$ breaking at temperatures $$Tge 165$$ MeV.

Journal Articles

Novel coupled channel framework connecting the quark model and lattice QCD for the near-threshold $$D_s$$ states

Yang, Z.*; Wang, G.-J.*; Wu, J.-J.*; Oka, Makoto; Zhu, S.-L.*

Physical Review Letters, 128(11), p.112001_1 - 112001_6, 2022/03

 Times Cited Count:21 Percentile:95.91(Physics, Multidisciplinary)

A novel framework is proposed to extract near-threshold resonant states from finite-volume energy levels of lattice QCD and is applied to elucidate structures of the positive parity $$D_s$$. The quark model, the quark-pair-creation mechanism and $$D^{(*)}K$$ interaction are incorporated into the Hamiltonian effective field theory. The bare $$1^+$$ $$cbar s$$ states are almost purely given by the states with heavy-quark spin bases. The physical $$D^*_{s0}(2317)$$ and $$D^*_{s1}(2460)$$ are the mixtures of bare $$cbar s$$ core and $$D^{(*)}K$$ component, while the $$D^*_{s1}(2536)$$ and $$D^*_{s2}(2573)$$ are almost dominated by bare $$cbar{s}$$. Furthermore, our model well reproduce the clear level crossing of the $$D^*_{s1}(2536)$$ with the scattering state at a finite volume.

Journal Articles

Role of the axial $$U(1)$$ anomaly in the chiral susceptibility of QCD at high temperature

Aoki, Shinya*; Aoki, Yasumichi*; Fukaya, Hidenori*; Hashimoto, Shoji*; Rohrhofer, C.*; Suzuki, Kei

Progress of Theoretical and Experimental Physics (Internet), 2022(2), p.023B05_1 - 023B05_12, 2022/02

 Times Cited Count:8 Percentile:82.94(Physics, Multidisciplinary)

The chiral susceptibility, or the first derivative of the chiral condensate with respect to the quark mass, is often used as a probe for the QCD phase transition since the chiral condensate is an order parameter of $$SU(2)_L times SU(2)_R$$ symmetry breaking. However, the chiral condensate also breaks the axial $$U(1)$$ symmetry, which is usually not studied as it is already broken by the anomaly and apparently has little impact on the transition. We investigate the susceptibilities in the scalar and pseudoscalar channels in order to quantify how much the axial $$U(1)$$ breaking contributes to the chiral phase transition. Employing a chirally symmetric lattice Dirac operator and its eigenmode decomposition, we separate the axial $$U(1)$$ breaking effects from others. Our result in two-flavor QCD indicates that both of the connected and disconnected chiral susceptibilities are dominated by axial $$U(1)$$ breaking at temperatures $$Tgeq 190$$ MeV after the quadratically divergent constant is subtracted.

Journal Articles

Kondo effect with Wilson fermions

Ishikawa, Tsutomu*; Nakayama, Katsumasa*; Suzuki, Kei

Physical Review D, 104(9), p.094515_1 - 094515_11, 2021/11

 Times Cited Count:5 Percentile:36.61(Astronomy & Astrophysics)

We investigate the Kondo effect with Wilson fermions. This is based on a mean-field approach for the chiral Gross-Neveu model including four-point interactions between a light Wilson fermion and a heavy fermion. For massless Wilson fermions, we demonstrate the appearance of the Kondo effect. We point out that there is a coexistence phase with both the light-fermion scalar condensate and Kondo condensate, and the critical chemical potentials of the scalar condensate are shifted by the Kondo effect. For negative-mass Wilson fermions, we find that the Kondo effect is favored near the parameter region realizing the Aoki phase. Our findings will be useful for understanding the roles of heavy impurities in Dirac semimetals, topological insulators, and lattice simulations.

Journal Articles

Lattice-fermionic Casimir effect and topological insulators

Ishikawa, Tsutomu*; Nakayama, Katsumasa*; Suzuki, Kei

Physical Review Research (Internet), 3(2), p.023201_1 - 023201_23, 2021/06

The Casimir effect arises from the zero-point energy of particles in momentum space deformed by the existence of two parallel plates. For degrees of freedom on the lattice, its energy-momentum dispersion is determined so as to keep a periodicity within the Brillouin zone, so that its Casimir effect is modified. We study the properties of Casimir effect for lattice fermions, such as the naive fermion, Wilson fermion, and overlap fermion based on the M$"o$bius domain-wall fermion formulation, in the $$1+1$$, $$2+1$$, and $$3+1$$ dimensional spacetime with the periodic or antiperiodic boundary condition. An oscillatory behavior of Casimir energy between odd and even lattice size is induced by the contribution of ultraviolet-momentum (doubler) modes, which realizes in the naive fermion, Wilson fermion in a negative mass, and overlap fermions with a large domain-wall height. Our findings can be experimentally observed in condensed matter systems such as topological insulators and also numerically measured in lattice simulations.

Journal Articles

Study of the axial $$U(1)$$ anomaly at high temperature with lattice chiral fermions

Aoki, Shinya*; Aoki, Yasumichi*; Cossu, G.*; Fukaya, Hidenori*; Hashimoto, Shoji*; Kaneko, Takashi*; Rohrhofer, C.*; Suzuki, Kei

Physical Review D, 103(7), p.074506_1 - 074506_18, 2021/04

 Times Cited Count:14 Percentile:73.22(Astronomy & Astrophysics)

We investigate the axial $$U(1)$$ anomaly of two-flavor QCD at temperatures 190-330 MeV. In order to preserve precise chiral symmetry on the lattice, we employ the M$"o$bius domain-wall fermion action as well as overlap fermion action implemented with a stochastic reweighting technique. Compared to our previous studies, we reduce the lattice spacing to 0.07 fm, simulate larger multiple volumes to estimate finite size effect, and take more than four quark mass points, including one below physical point to investigate the chiral limit. We measure the topological susceptibility, axial $$U(1)$$ susceptibility, and examine the degeneracy of $$U(1)$$ partners in meson/baryon correlators. All the data above the critical temperature indicate that the axial $$U(1)$$ violation is consistent with zero within statistical errors. The quark mass dependence suggests disappearance of the $$U(1)$$ anomaly at a rate comparable to that of the $$SU(2)_L times SU(2)_R$$ symmetry breaking.

Journal Articles

Casimir effect for lattice fermions

Ishikawa, Tsutomu*; Nakayama, Katsumasa*; Suzuki, Kei

Physics Letters B, 809, p.135713_1 - 135713_7, 2020/10

AA2020-0811.pdf:0.54MB

 Times Cited Count:10 Percentile:75.97(Astronomy & Astrophysics)

We propose a definition of the Casimir energy for free lattice fermions. From this definition, we study the Casimir effects for the massless or massive naive fermion, Wilson fermion, and (M$"o$bius) domain-wall fermion in 1+1 dimensional spacetime with the spatial periodic or antiperiodic boundary condition. For the naive fermion, we find an oscillatory behavior of the Casimir energy, which is caused by the difference between odd and even lattice sizes. For the Wilson fermion, in the small lattice size of $$N geq 3$$, the Casimir energy agrees very well with that of the continuum theory, which suggests that we can control the discretization artifacts for the Casimir effect measured in lattice simulations. We also investigate the dependence on the parameters tunable in M$"o$bius domain-wall fermions. Our findings will be observed both in condensed matter systems and in lattice simulations with a small size.

Journal Articles

Charmed baryon spectrum from lattice QCD near the physical point

Bahtiyar, H.*; Can, K. U.*; Erkol, G.*; Gubler, P.; Oka, Makoto; Takahashi, Toru*

Physical Review D, 102(5), p.054513_1 - 054513_18, 2020/09

AA2020-0041.pdf:2.4MB

 Times Cited Count:30 Percentile:88.86(Astronomy & Astrophysics)

Spectrum of the ground state and excited states of charmed baryons was evaluated in the lattice QCD, the first principle of hadronic interaction. We deliver the spectrum of the positive and negative parity baryons with one, two or three charmed quarks. A variational approach was employed by the use of multiple operators with different Dirac matrix configurations and the smearings.

Journal Articles

Axial U(1) symmetry and mesonic correlators at high temperature in $$N_f=2$$ lattice QCD

Suzuki, Kei; Aoki, Shinya*; Aoki, Yasumichi*; Cossu, G.*; Fukaya, Hidenori*; Hashimoto, Shoji*; Rohrhofer, C.*

Proceedings of Science (Internet), 363, p.178_1 - 178_7, 2020/08

We investigate the high-temperature phase of QCD using lattice QCD simulations with $$N_f=2$$ dynamical M$"o$bius domain-wall fermions. On generated configurations, we study the axial $$U(1)$$ symmetry, overlap-Dirac spectra, screening masses from mesonic correlators, and topological susceptibility. We find that some of the observables are quite sensitive to lattice artifacts due to a small violation of the chiral symmetry. For those observables, we reweight the M$"o$bius domain-wall fermion determinant by that of the overlap fermion. We also check the volume dependence of observables. Our data near the chiral limit indicates a strong suppression of the axial $$U(1)$$ anomaly at temperatures $$geq$$ 220 MeV.

Journal Articles

Symmetries of the light hadron spectrum in high temperature QCD

Rohrhofer, C.*; Aoki, Yasumichi*; Cossu, G.*; Fukaya, Hidenori*; Gattringer, C.*; Glozman, L. Ya.*; Hashimoto, Shoji*; Lang, C. B.*; Suzuki, Kei

Proceedings of Science (Internet), 363, p.227_1 - 227_7, 2020/08

Properties of QCD matter change significantly around the chiral crossover temperature, and the effects on $$U(1)_A$$ and topological susceptibilities, as well as the meson spectrum have been studied with much care. Baryons and the effect of parity doubling in this temperature range have been analyzed previously by various other groups employing different setups. Here we construct suitable operators to investigate chiral and axial $$U(1)_A$$ symmetries in the baryon spectrum. Measurements for different volumes and quark-masses are done with two flavors of chirally symmetric domain-wall fermions at temperatures above the critical one. The possibility of emergent $$SU(4)$$ and $$SU(2)_{CS}$$ symmetries is discussed.

Journal Articles

Radiative transitions of singly and doubly charmed baryons in lattice QCD

Bahtiyar, H.*; Can, K. U.*; Erkol, G.*; Oka, Makoto; Takahashi, Toru*

JPS Conference Proceedings (Internet), 26, p.022027_1 - 022027_4, 2019/11

Transition amplitude of spin 3/2 single and double-charm baryon to spin 1/2 ground state was evaluated in the lattice QCD, the first principle.

Journal Articles

Spectrum of the charmed baryons in 2+1-flavor lattice QCD

Can, K. U.*; Bahtiyar, H.*; Erkol, G.*; Gubler, P.; Oka, Makoto; Takahashi, Toru*

JPS Conference Proceedings (Internet), 26, p.022028_1 - 022028_5, 2019/11

Spectrum of the ground state and excited states of charmed baryons was evaluated in the lattice QCD, the first principle.

Journal Articles

$$D$$ mesons as a probe of Casimir effect for chiral symmetry breaking

Ishikawa, Tsutomu*; Nakayama, Katsumasa*; Suenaga, Daiki*; Suzuki, Kei

Physical Review D, 100(3), p.034016_1 - 034016_14, 2019/08

 Times Cited Count:5 Percentile:30.59(Astronomy & Astrophysics)

We propose $$D$$ mesons as probes to investigate finite-volume effects for chiral symmetry breaking at zero and finite temperatures. By using the 2+1-flavor linear sigma model with constituent light quarks, we analyze the Casimir effects for the $$sigma$$ mean fields; the chiral symmetry is rapidly restored by the antiperiodic boundary for light quarks, and the chiral symmetry breaking is catalyzed by the periodic boundary. We also show the phase diagram of the $$sigma$$ mean fields on the volume and temperature plane. For $$D$$ mesons, we employ an effective model based on the chiral-partner structure, in which the volume dependence of $$D$$ mesons is induced by the $$sigma$$ mean fields. We find that $$D_s$$ mesons are less sensitive to finite volume than $$D$$ mesons, which is caused by the insensitivity of $$sigma_s$$ mean fields. An anomalous mass shift of $$D$$ mesons at high temperature with the periodic boundary will be useful in examinations with lattice QCD simulations. The dependence on the number of compactified spatial dimensions is also studied.

Journal Articles

Recent progress in QCD condensate evaluations and sum rules

Gubler, P.; Sato, Daisuke*

Progress in Particle and Nuclear Physics, 106, p.1 - 67, 2019/05

AA2019-0104.pdf:1.35MB

 Times Cited Count:64 Percentile:91.94(Physics, Nuclear)

We review the recent status of the QCD sum rule approach to study the properties of hadrons in vacuum and in hot or dense matter. Special focus is laid on the progress made in the evaluation of the QCD condensates, which are the input of all QCD sum rule calculations, and for which much new information has become available through high precision lattice QCD calculations, chiral perturbation theory and experimental measurements. Furthermore, we critically examine common analysis methods for QCD sum rules and contrast them with potential alternative strategies. The status of QCD sum rule studies investigating the modification of hadrons at finite density as well as recent derivations of exact sum rules applicable to finite temperature spectral functions, are also reviewed.

Journal Articles

Finite temperature sum rules in the vector channel at finite momentum

Gubler, P.; Sato, Daisuke*

Physical Review D, 96(11), p.114028_1 - 114028_20, 2017/12

AA2017-0609.pdf:1.09MB

 Times Cited Count:5 Percentile:28.59(Astronomy & Astrophysics)

Exact sum rules for the longitudinal and transverse part of the vector channel spectral functions at nonzero momentum are derived in the first part of the paper. The sum rules are formulated for the finite temperature spectral functions, from which the vacuum component has been subtracted, and represent a generalization of previous work in which sum rules were derived only for the zero-momentum limit. In the second part of the paper, we demonstrate how the sum rules can be used as constraints in spectral fits to lattice data at various temperatures, with the latest dynamical lattice quantum chromodynamics data at zero momentum.

JAEA Reports

Proceedings of the 3rd Symposium on Science of Hadrons under Extreme Conditions; January 29-31, 2001, JAERI, Tokai, Japan

Chiba, Satoshi

JAERI-Conf 2001-012, 116 Pages, 2001/09

JAERI-Conf-2001-012.pdf:6.33MB

The third symposium on Science of Hadrons under Extreme Conditions, organized by the Research Group for Hadron Science, Advanced Science Research Center, was held at Tokai Research Establishment of JAERI on January 29 to 31, 2001. The symposium was devoted for discussions and presentations of research results in wide variety of hadron physics such as nuclear matter, high-energy nuclear reactions, quantum chromodynamics, neutron stars,supernovae, nucleosynthesis as well as finite nuclei to understand various aspects of hadrons under extreme conditions. Twenty two papers on these topics, including a special talk on the present status of JAERI-KEK joint project on high-intentisy proton accelerator, presented at the symposium aroused lively discussions among approximately 40 participants.

Journal Articles

Color molecular dynamics for high density matter

Maruyama, Toshiki; Hatsuda, Tetsuo*

Physical Review C, 61(6), p.062201_1 - 062201_5, 2000/06

 Times Cited Count:13 Percentile:56.59(Physics, Nuclear)

no abstracts in English

JAEA Reports

Analysis of the proton-induced reactions at 150MeV $$sim$$ 24GeV by high energy nuclear reaction code JAM

Niita, Koji*; Nara, Yasushi; Takada, Hiroshi; Nakashima, Hiroshi; Chiba, Satoshi; Ikeda, Yujiro

JAERI-Tech 99-065, p.42 - 0, 1999/09

JAERI-Tech-99-065.pdf:1.83MB

no abstracts in English

39 (Records 1-20 displayed on this page)